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Abstract 
 
We use spectral analysis to facilitate Gaussian 

processes (GP) classification. Our solution provides two 
improvements: scaling of the data to achieve a more 
isotropic nature, as well as a method to choose the kernel 
to match certain data characteristics. Given the dataset, 
from the Fourier transform of the training data we 
compare the frequency domain features of each 
dimension to estimate a rescaling (towards making the 
data isotropic). Also, the spectrum of  the  training data is 
compared with several candidate kernel spectrums. From 
this comparison the best matching kernel is chosen. In 
these ways, the training data matches better the GP 
classification kernel function (and hence the underlying 
assumed correlation characteristics), resulting in a better 
GP classification result. Test results on both non image 
and image data show the efficiency and effectiveness of 
our approach. 

1 Introduction 
 
We aim to develop an efficient way of improving the 

performance of building detection (segmentation) based 
on Gaussian processes (GP) classification.  

The GP classification process models the posterior 
directly, thus relaxing the strong assumption of 
conditional independence of the observed data (generally 
used in a generative model).  

The GP prior is represented by the kernel function 
which characterizes correlations between points in the 
training data (which is a sample process). The kernel 
function hyperparameters can be learned from the training 
data. 

We found two issues exist in GP classification. The GP 
classification performance with the same kernel function 
(isotropic) on different data (usually anisotropic) can vary 
significantly. The GP classification results are also 
different when applying different kernel functions to the 

same data. Essentially, the two issues are aspects of the 
problem of how the isotropic GP kernel prior can be 
matched with data having varied characteristics.  

Obviously, an anisotropic kernel function can be used 
to cope with the anisotropic data, at the cost of greatly 
increasing the complexity. 

Our approach improves the GP classification 
performance by means of better matching the GP kernel 
with the data from two aspects: First, minimize the 
training data spectrum differences, between dimensions 
(feature data), by rescaling the training data input feature 
space on each dimension (so as to make a better match 
with the isotropic GP kernel function). The parameter of 
rescaling is calculated adaptively, based on the analysis 
on frequency domain, where the data characteristics are 
more distinguishable.  

Secondly, estimate the spectrum of the rescaled data 
on each dimension, which is then compared with several 
kernel spectrums from which the most matched kernel is 
chosen.  

Existing approaches for building detection include 
Kumar and Hebert’s approaches using Multiscale 
Random Field (MSRF) and Discriminative Random Field 
(DRF) models whose results will be compared to ours. 
Lin and Nevatia [1] use rooftop and aerial images but 
these have different characteristics to ground level 
building views (the focus of this paper). 

Alternative solutions for tackling data anisotropy and 
non-stationarity include data partitioning [2] which deals 
with the special case of sharp changing data. Non-
stationary kernel functions [3] and mixtures of stationary 
GP [4] have also been used.  

Specifically focusing on the anisotropy problem, 
Schmidt and O’Hagan [5], applied an interpolation/ 
deformation: which maps the original space to a new 
isotropic one. The approach employs Monte Carlo 
Markov Chain (MCMC) methods, making the solution 
involved and computationally costly. Snelson, Rasmussen 
and Ghahramani presented a warped GP [6] where the 
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transformations are applied to the observation (output) 
space and make the data better modelled by a GP. 

As for kernel selection which is part of the model 
selection problem in GP classification, existing methods 
include Bayesian model selection and cross validation [7]. 
These methods work reasonably well for optimization of 
the kernel hyperparameters. When dealing with choice of 
the functional form kernel, these approaches would either 
be intractable or at least very difficult.  

In our approach, similar to the scheme of Snelson et. al 
[6], instead of warping the output space, the input feature 
space is rescaled to be more isotropic but in a more 
simple way. We seek to address the kernel-data matching 
problem efficiently by analyzing the training data, as well 
as the kernel function, in the frequency domain. We then 
apply a scale transformation on the input feature data 
space followed by a comparison between kernel and 
training data spectrums for kernel selection. No costly 
computation is involved.  

The paper is structured as follows. GP spectral analysis 
on kernel functions is introduced in Section 2. A 
description of the kernel-data matching algorithm is given 
in Section 3. In Section 4, experiment details and results 
are presented. Section 5 provides the main conclusions of 
the work.  
 
2 Gaussian processes spectral analysis on 

kernel functions 
 
A GP is fully specified by its mean function m(x) and 

kernel function k(x, x’) , expressed as: 
),(~ kmGPf                       (2.1) 

In the building detection application, a binary GP 
classifier is needed to discriminate between man-made 
structure and non-structure assuming the dataset is 

),( yXD = , where X are input training data features 
and y  the class labels -1/+1.  

GP binary classification is done by first calculating the 
distribution over the latent function, then the output of 
regression is ‘squashed’ through a sigmoid transformation 
to guarantee the valid probabilistic value within the range 
of [0,1].  

The GP kernel is the crucial part of GP classification 
as it incorporates the prior smoothness assumption. The 
kernel functions studied in this paper include:  
1) Radial Basis Function (RBF), also called as Squared 

Exponential (SE) function or Gaussian function 
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 where r and l are the same as in equation (2.2). 
 

We denote the kernel functions in equation (2.2), (2.3) 
and (2.4) as RBF, M52 and M32 respectively. Their 
corresponding spectrums in D dimension are represented 
as follow: 
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From equation (2.5), (2.6) and (2.7): 
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Further details of kernels can be found in [7]. 
 
3 The kernel-data matching algorithm 

 
The kernel-data matching algorithm is a two step 

procedure: First, training data is rescaled so that the 
spectrum difference between dimensions is minimized for 
the purpose of better fit to the isotropic kernels. Then the 
spectrum is estimated from this rescaled data to match 
with the spectrum of one of a group of kernels (see above) 
from which the best kernel is chosen. 

 
3.1 Data rescale 

 
The GP classification with isotropic kernel function 

works better on ‘isotropic’ data, i.e. data with 
homogeneous properties on each dimension. We focus on 
a property which we call ‘signature frequency’, and, 
intuitively, this describes the fluctuation of training data 
frequency content in Figure 1(a). This is further explained 
below.  

 



 

 

                     (a)                                                    (b) 
Figure 1. Signature frequency. (a) Training data frequency 
content (on one dimension). (b) FFT of (a). 

 
In order to analyse the training data on each dimension 

individually and efficiently, the high dimensionality of the 
unevenly spaced training input is reduced by projecting to 
each dimension where the nonuniform discrete Fourier 
transform (NDFT) [8] is calculated. Thereby, data 
rescaling is carried out by simply rescaling training input 
respectively on each dimension so as to make the 
‘signature frequency’ of the frequency content on 
different dimensions consistent with each other.  

The ‘signature frequency’ on each dimension is 
estimated in the following way: 
1) Project training data onto to each dimension. 
2) Calculate the NDFT of the projected training data on 

each dimension (which is called training data 
frequency content hereafter). 

3) Further calculate the FFT of the training data 
frequency content on each dimension to capture the 
frequency fluctuation. 

4) Smooth (using any common method like kernel 
smoothing) the FFT coefficients to ignore small 
fluctuation. 

5) If only one peak exist on the FFT coefficients, choose 
this peak and record the corresponding frequency 
value as its ‘signature frequency’. 

6) If more than one peak exist among the FFT 
coefficients as in Figure 1(b), choose the one within 
high frequency range, which is empirically defined as 
greater than 4 Hz. Record the related frequency value 
as ‘signature frequency’. 

7) Set the maximum ‘signature frequency’ value over all 
dimensions as the ‘target frequency’. 

8) Rescale index = target freq. / signature freq.  (3.1) 
9) Multiply the input of the training data with “rescale 

index”. 
Thus, rescaling is implemented in space domain, 

making the signature frequency close to the same target 
frequency value on each dimension. 

 
3.2 Kernel selection 
 

The assumption in GP classification is that the training 
data is a sample drawn from the GP process specified by a 
particular kernel function. It is further assumed, in 
engineering applications, that the GP is an ergodic  
process: which means that the time average and the 

ensemble average are the same. In this way, the spectrum 
of the GP can be estimated from one of its derived 
observed sample [9] (which is the training data in our 
application) rather than many samples over a long period 
of time. From the rescaled data obtained in Section 3.1, 
the spectrum is further estimated to choose the best kernel. 

It should be noted that (different from the calculation 
in Section 3.1 which is to obtain the frequency content of 
the training data itself) what is to be estimated here is the 
spectrum of the underlying GP that derives the training 
data as one manifestation of the process. 

By estimating the kernel spectrum from the given 
training data, and matching that with one of the candidate 
kernel spectrums, the best kernel can be chosen for the 
training data. 

Since the rescaled data obtained in Section 3.1 are still  
unevenly distributed (multiplying a coefficient does not 
change the nonuniformity of the data distribution), 
conventional spectrum estimation methods which are 
based on equally spaced data cannot be used directly. 
Therefore, an IFFT is implemented on the rescaled data’s 
NDFT result (which can be deduced from the NDFT 
result in Section 3.1 – see step 1 below). The IFFT is then 
used to produce equivalent (but equally spaced) version of 
the rescaled nonuniform data. The underlying GP 
spectrum can then be estimated on this equivalent evenly 
spaced data.  
 

 
(a)                           (b)                          (c) 

Figure 2. Reference spectrums. (a) RBF. (b) M52. (c) M32. 
 

Among the candidate kernels, the one with its 
spectrum most correlated with the underlying GP 
spectrum of the training data, is chosen to be the best 
kernel. Figure 2 shows the candidate kernel spectrums 
w.r.t. equation (2.8) ~ (2.10) which are used as reference 
spectrums for the underlying GP spectrum to compare 
with. Parameters of the reference spectrums in Figure 2 
are adjusted for the function values to converge at 1.5 Hz 
so as to keep consistency between spectrums.  

The detailed algorithm is as follows: 
1) Calculate the NDFT of the rescaled data (which can be 

done by scaling, by the reciprocal of the rescale index,  
the NDFT result of Section 3.1). 

2) Calculate IFFT of the NDFT result from 1) to get an 
equivalent equally spaced data of the original rescaled 
data. 

3) Estimate the underlying GP spectrum on each 
dimension using the eigenvector method - which is 
one of the many existing spectrum estimation methods 



 

 

available in Matlab (“peig” function in Signal 
Processing Toolbox). 

4) Calculate the correlation coefficients of the estimated 
underlying spectrum with the reference kernel 
spectrums (illustrated in Figure 2).  

5) Compare the correlation coefficients of each 
dimension across all kernels. 

6) Choose the kernel with the property that its correlation 
coefficient is the highest across the maximum number 
of dimensions. 

 
4 Experiments and results 
 
4.1 Non image data 

 
Our approach has been tested on non-image data 

besides image data.  
 The 8 non-image data files are randomly taken from 

‘The UCI Repository of Machine Learning Databases and 
Domain Theories’.   

 Figure 3 shows the rescaling results on file ‘Monks-3’. 
 Each dimension of the rescaled data is more 

homogeneous in the frequency domain w.r.t. the 
‘fluctuation’: as a result of scale transformation with 
parameters shown in Table 1.   
  

 Signature 
frequency 

Rescale index= 
max(signature frequency)  
/signature frequency 

Dim 1 20 1 
Dim 2 10 2 
Dim 3 10 2 
Dim 4 20 1 
Dim 5 10 2 
Dim 6 20 1 
Dim 7 20 1  

Table 1. Signature frequency and ‘rescale index’ values of 
‘Monks-3’ on each dimension. 

 
 RBF M52 M32 

Dim 1 0.9436 0.9026 0.9822 
Dim 2 0.8836 0.8488 0.9211 
Dim 3 0.8926 0.8271 0.9098 
Dim 4 0.9436 0.9026 0.9822 
Dim 5 0.4622 0.7677 0.7064 
Dim 6 0.4622 0.7677 0.7064 
Dim 7 0.4622 0.7677 0.7064 

Max count 0 3 4 
Improved GP DR  0.9035 0.9079 0.9167 
Improved GP FP 4 4 3 
Standard GP DR 0.8860 0.8947 0.8991 
Standard GP FP 8 8 7  

Table 2. Correlation coefficients between data spectrums 
and kernel spectrums as well as the classification 
performance on different kernels (DR denotes detection rate
and FP denotes false positives). 

Kernel selection is then implemented based on the 
rescaled data using the algorithm described in Section 3.2 
with details listed in Table 2. The first 7 rows show the 
correlation coefficients between the spectrum on each 
dimension and the candidate kernel function spectrums. 
The kernel with the most maximum coefficients is chosen. 
In this case, M32 is chosen (with 4 maximum 
coefficients).  

The results of our improved GP classification, as listed 
in Table 2, compared with standard GP classification 
results, clearly shows that the rescaling improves GP 
classification performance on all kernels. Moreover, our 
kernel selection clearly chooses the best kernel (M32 in 
all of these cases).  

Test results on more UCI data files are provided in 
Figure 4: note that the performance is enhanced resulting 
in either an increase on detection rate or a drop on false 
positives (or both). This shows that our algorithm works 
well on varied datasets. 
 
4.2 Image data 

 
The proposed approach was trained and tested using 

the Corel images that Kumar [10] used1. All images are 
cut to the size of 256x256 and the training images are 
divided into non-overlapping 16x16 pixels blocks which 
are labelled as one of the two classes, i.e. building or non-
building blocks.  

A 14 component feature vector is computed at each 
16×16 block. These features are derived from 
“orientograms” which are the histograms of gradient 
orientations in a region weighted by gradient magnitudes. 
They are designed to capture the lines and edges patterns 
in man-made structures [10] [11]. 

We used a training set of 28 Corel images, containing 
714 structured blocks and 2893 non-structured blocks. 
Testing is implemented on 70 Corel images.  

We run Lawrence’s program [12] 2  for GP 
classification.  

Figure 5 shows a more similar frequency content in 
each dimension, after the data has been rescaled. 
Especially, there is a significant change on dimension 4 to 
6 (a large scaling in the signal domain, with the 
parameters shown in Table 3, resulting a shrink in 
frequency domain).The frequency content is more 
concentrated in the lower frequency, which is more 
consistent with the kernel function spectrum. 

 Results of (subsequent) kernel selection are presented 
in Table 4  - where the maximum correlation on each row 
“vote” for a kernel type and the kernel with the largest 
“vote”(Max count), i.e. M32 is chosen. From the results 
in Table 5, it can be seen for our improved GP 
                                                
1 http://www.cs.cmu.edu/~skumar/manMadeData.tar 
2 http://www.cs.man.ac.uk/~neill/ivm/downloadFiles/ 



 

 

classification,  with training data properly rescaled, and 
the best kernel (which is M32) chosen; the performance 
(i.e. detection rate and false positives), are clearly better 
than either the standard GP results or Kumar’s [10, 13] 
MSRF and DRF results.  

It should also be noticed that under our improved GP 
classification framework, M32 kernel performs better 
than RBF. However, this contrasts with standard GP 
classification where the RBF has a better result.  

The tables report average performances. Of course this 
is the result of higher detection rates and lower false 
positives obtained on many individual images: some 
sample images are shown in Figure 6. Improved GP 
classification result images are compared with standard 
GP classification images as well as Kumar’s [10, 13] 
image results (reproduced from his black and white 
format papers). One can see that our improved GP 
classification produces building labels (the squares) that 
tend to cover more building regions and have less false 
detections. 

(a) 

(b) 
Figure 3. Frequency content of ‘Monks-3’ (a) Original frequency 
content on each dimension. (b) Rescaled frequency content on 
each dimension.  

 

Figure 4. Performance comparison between standard GP and 
improved GP on UCI data. 

  

                                                                                                         (a) 

                                                                                                         (b) 
Figure 5. Frequency content of Corel images. (a) Original frequency content on each dimension. (b) Rescaled frequency content on 
each dimension. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

       
                 (a)                                 (c)                                 (e)                                (g) 

      
                 (b)                                 (d)                                 (f)                                (h) 
Figure 6. Classification results. (a)(b) Original images (c)(d) Kumar’s results (e)(f) Standard 
GP results (g)(h) Improved GP results. 



 

 

 Signature 
frequency 

Rescale index= 
max(signature frequency) 
/signature frequency 

Dim 1 10 1.3 
Dim 2 12 1.08 
Dim 3 13 1 
Dim 4 1 13 
Dim 5 1 13 
Dim 6 1 13 
Dim 7 10 1.3 
Dim 8 10 1.3 
Dim 9 10 1.3 
Dim 10 12 1.08 
Dim 11 7 1.86 
Dim 12 7 1.86 
Dim 13 6 2.17 
Dim 14 6 2.17  

Table 3. Signature frequency and rescale index values 
of Corel images on each dimension. 

 
 RBF M52 M32 

Dim 1 0.9431 0.8985 0.9788 
Dim 2 0.9515 0.8906 0.9768 
Dim 3 0.9730 0.6986 0.8543 
Dim 4 0.8443 0.9692 0.9887 
Dim 5 0.8421 0.9631 0.9844 
Dim 6 0.8690 0.9549 0.9888 
Dim 7 0.5475 0.9440 0.8430 
Dim 8 0.4483 0.7191 0.6790 
Dim 9 0.3655 0.6115 0.5773 
Dim 10 0.7879 0.9887 0.9776 
Dim 11 0.9138 0.9264 0.9865 
Dim 12 0.8812 0.9483 0.9890 
Dim 13 0.9062 0.9424 0.9916 
Dim 14 0.9548 0.8838 0.9714 

Max count 1 4 9  
Table 4. Correlation coefficients between the data 
spectrums and kernel spectrums. 

 
 

 Detection rate False positives 
Kumar’s MRSF 0.7213 1.46 
Kumar’s DRF 0.7050 1.37 

Improved GP - M32 0.7660 1.23 
Improved GP - RBF 0.7540 1.40 
Standard GP - M32 0.7250 2.79 
Standard GP - RBF 0.7370 2.06  

Table 5. Performance comparison of Corel images 
classification with improved and standard GP results as 
well as Kumar’s results.   

 
5 Conclusions 

 
We proposed an efficient, yet effective, way to 

improve the GP classification by exploiting spectral 
analysis: which is effective in revealing the underlying 
characteristics on both training data and kernel functions. 
The training data is better matched with the GP kernel 

function by rescaling to improve isotropy; as well as by 
kernel selection based on spectrum comparison. As a 
result, a better GP classification performance is achieved.  

More sophisticated feature space adjustment other 
than scale transformation can be further investigated. The 
solution can also be extended to more kernel functions. 
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